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Solutions to tutorial exercises for stochastic processes

T1. If 3+ 6 = 0 then by the Kolmogorov backward-equations:

apt(x y) 0,

so that pi(z,y) is constant. Since py(z,z) = 1, pi(x,y) = Iyz—,. Now suppose that
f+ 6 > 0. The Kolmogorov backward-equations are solved uniquely by P, = exp(tQ).
The matrix @) has eigenvalues 0 and —f3 — 0. We can find a matrix U such that
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This is solved by
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T2. (a) Let t* be the time of the first jump. If Xy = 0 then this ¢* is exponentially distributed
with parameter 3. We now have
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we have by the tower property
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We now use the strong Markov property to get
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and similarly

PU (Xt: 1

t" e {Et, ﬂt]) > inf PY(X,,=1).
n n 36[

Et,@t]
So the sum in (1) converges to the Riemann-Stieltjes integral as n — oc:
t
p(0,1) :/ P (X;—s = 1)dF(s)
0
t
- / 66_68]915—8(17 1)ds,
0

where F'(s) =1 — exp(—[s). By using the same argumentation we find
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(b) By definition of the Q-matrix we have
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Similarly we can find ¢(1,0) = . Since the row sums of the () matrix are zero we
conclude ¢(0,0) = —f and ¢(1,1) = —¢.




T3. Items (a) and (b) are equivalent since

{N(t) < 0} = {im>t}.

We will now show the equivalence of (b) and (c). Let A > 0. Conditioned on Zy, 71, .. .,
the random variables 7y, ..., 7, are independent exponential random variables. Therefore,
using the moment generating function of the exponential distribution:
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We now take expectations on both sides and let n — oo to find
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where we use dominated convergence to switch limit and expectation. The product [, C(CZ(kZ)’“J)r 5 >

0 if and only if [, <1 + C(T/\k)> < oo and this is equivalent to ).~ ﬁ < 00. We conclude

by taking A | 0:
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